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RESUME.Dans cet article, nous étudions la conception optimale d’un réacteur higplegdans
lequel un substrat est dégradé par un écosystéme microbien damiionnement non homo-
gene. Dans le but d’obtenir un modeéle entrée-sortie simple sous la foumeysteme d’EDOs
mais prenant en compte le caractére non homogene du réacteuremmgrrmodele de dimen-
sion infini est approximé par une interconnection de chemostats. kakats préliminaires en
considérant une cinétique de Monod sont présentés.

ABSTRACTIN this paper, we focus on the modeling, simulation and shape optimization of a
dispersive bio-reactor in which a substrate is degraded by a microbiasystem in an non
homogeneous environment. Two different modeling approachessacein order to obtain a

low computational model to quickly evaluate the behavior of our bio-readtioe first one is
based on coupled spatial and time dependent EDPs. The secondtaiaed by optimization,

is based on two interconnected systems of ODEs with coefficient calilusitegithe first PDE
model. Preliminary results assuming a Monod kinetics are presented.

MOTS-CLES :Bioreacteur dispersif, Optimisation de forme, Conception optimale, Optinmisato
globale, Algorithms génétiques.

KEYWORDSDispersive bioreactors, Shape optimization, Optimal design, Global optiioiz,
Genetic algorithms.
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1. Introduction

The optimal design —the characterization of the main desagarpeters of a sys-
tem under performance/economical/footprint constraintsf biosystems has attrac-
ted a lot of attention these last years. Indeed, the diyeo§itinitary systems and the
large spectrum of optimization criteria has led to the defocthe “best solution” with
respect to a given optimization problem, in particular ie field of catalytic chemical
reactions. The problem under consideration in most studiade stated as follows :
given

1) the model of the process,

2) the input and required output reactant concentratidva {$ to say, the conver-
sion rate is specified), and

3) the flow rate to be processed, what are the volumes t¢dinks in series such
that the total volume of the whole process be minimal ?

A rigorous solution to this problem for catalytic biosyst(he., a biological reaction
in which the activity of the biocatalystis assumed to be taim3 exhibiting Michaelis-
Menten kinetics was proposed by [LUY 82], while the solutiona fairly large class
of autocatalytic systems (including, in particular, thelli@own Monod and Hal-
dane kinetics) was proposed by [HIL 89]. Recently, thesaltesvere revisited and
extended by [HAR 03], [HAR 05] and [NEL 06].

However, these studies suffer of two important drawbacks :

— While the proposed results are valid for small and mediuradsgy/stems, the
diffusion phenomena that occur in larger tanks were notistlid

— The dimensioning parameters were not considered —onlyotlaé iolume of
the systems were optimized. However, with respect to a s, adesign parameters
such as the diameter or the height of any biological or chalsigstem will influence
its performance.

In the present paper we propose to couple hydrodynamicsbigthgical phenomena
occurring in a diffusive bio-reactor which the main desigmameters (reactor shape
and total volume) are optimized with respect to the outpateatration. To do so, we
present a particular spatial modeling based on coupled PEslso define a second
model, computationally cheaper, based on two systems ofsQiith coefficient cali-
brated using the outputs given by the PDE model. The obgdtithis second model
is to quickly provide the behavior of the considered bioteac

The paper is organized as follows. First, the PDE and ODE tearféhe system
and the way they are compared are presented. Then, the patiom problem and
the optimization method used to sole it are give. Finallynegreliminary results are
given.
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2. Mathematical model

In this Section we present the two models used to describ&dahavior of the
considered bio-reactors.

2.1. Device description

The bioreactor under consideration is depicted in Figuag. 1{ contains a certain
amount of biomass that resides Gl and reacts with a diluted substrate entering
through an inlef;, that is located at the top. At the bottom there is an ouifgf
allowing the uncontaminated liquid to leave the container.

The device’s geometry is that of a solid of revolution andjsamuently, it can be
characterized by a 2D model. The symmetry dXjg,, is shown as a dotted line in
Figure 1(b), the container region is denoted(hythe wall isT'y,,;;, and the inlet and
outlet are (respectivelyl);, andIl'y,:. Note thatdf2 = I'iy, U I'yan U Loyt U Dgym .

r sym

*
wall

e
T 1

- | Fo
(a) 3D representation of the bio- (b) 2D symmetric repre-
reactor sentation of the bioreac-
tor

In the numerical experiments that we performed the lengihgf, was setto 5 m.
and the radius of the inlet and outlet were fixed'gt= ', = 0.5m.

2.2. PDEs based modeling

Background material on a similar device can be found in [GRI O
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The fluid is modelled using the Incompressible Navier-Ssatguations

P2 4 p(u- V)u="V- [—p1+n(Vu+(Vu)T)} +F, N0
V-u=0 inQ

whereu = (u,v) is the velocity field [m/s]p is the pressure [Pa}; is the density
[kg/m?3], n is the dynamic viscosity [Pas], andF = (0, —g - 1) is the volume force
[N/m?3], with go ~ 9.8 [m/s?] being the standard gravity constant.

The boundary conditions ar@in = 0, in I'sym, t- [—pI +7 (Vu + (Vu)T)] n=—

0,in Ty, 1 = U, in Ty, 7 (Vu + (Vu)T) n=0,inTou,p = 0,inCoue, u = 0,in

Cwan, Whereuy = (0, vo) gives a parabolic velocity condition = Q(z — 1)(z + 3)
at the inlet with@ = 0.2 m/s.

The process of convection and diffusion of the substraidér{s is modelled by :

% +V - (=D1Vs) = —u(s)z —u- Vs, inQ, (2)

wheres stands for the concentration of the substrate [m¢j/mnd D; = 2 - 1078
[m?/s] is the diffusion coefficient. The reaction ratés a Monod (Michaelis-Menten)
kinetic function of the formu(c) = “maxfe’ With fmax = 0.05 [s71].

The boundary conditions are given byn - N = Ny, inTjp n- N =0, in gy U
Cyan, n- (—D1Vs) = 0, in Ty, whereN = —D; Vs + su, and the inward flux is
given by Ny = S, v [mol/(m? - s)] takingS;, = 1 in this case. The tank starts with a
homogeneous value afset to 0.5 [mol/m].

For the biomass, the convection and diffusion are goveryeelgbiations similar
to (2) (changing the sign gf(s)z) with a diffusion coefficientD, = 3 - 1078 [m?/s],
Ny = 0 [mol/(m? - s)] and an uniform initial bio-reactor concentration of[@6l/(m?

s)].

This system of PDEs is solved by using a Finite Element Metpatoach descri-
bed in [IVO 06-b].

2.3. ODE based modeling and comparison with PDE based model

We have performed a comparison between the PDE model androduke| based
on ODEs systems which model two bio-reactors, obtained Wigidg the main bio-
reactor in two interconnected sub-volumes : one volume-i$/, which receive and
reject the contaminated flow, and the other ¢he- «) - V, which is connected with
the previous tank.
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This model is defined by the following dynamical system

. d
&1 = p(s1) xr — 2361 + — (22 — 1),

aV aV
§1 = 7#(51).%1 + %(Sin - 51) + oV (52 - 51)’
.%"2 = /L(Sg) xo + (lda)‘/(xl - 1'2), (3)
S9 = —p(s2) 2 + (1—da)V(Sl — 82),
Il(O) = ZCQ(O) = Sina
81(0) = 82(0) = 0,

wherex; andx, correspond to the evolution of the biomass apdndss correspond
to the evolution of the substrate in the two sub-volumess (0,1), d > 0, and
Q = 4/37r3Q with r = 0.5 being the radius of the inlet ari@ having the same value
as in Section 2.2.

If we denote bySOPF the value ofs; when [3] reaches its steady state then we

can construct a mapping
Sin — SOPE(S o, d).

out

The equivalent of the previous mapping fADE can be defined as a correspondence
betweenS;, and the concentration of substrate at the outlet after éntinge has

passed :
Jr edl
Sin SPDE Sin —_ Cout 4
= Oout ( ) frout dr ( )
These two functionsQRE and SERE provide us with the basis for comparison of the

two models. We performed the following two numerical expents for the cylindri-
cal shape described in Section 2.4 §;¢ ranging from 0.25 to 10 mol/f:

ODE1 For each value of5;, we computed the values of and d that minimized
(SOPE(Si: v, d) — SPRE(S;,))2. The resulting values are shown in Figure 3.2.

out out
ODE2 For the set{S{ |i = 1,...,5}, we computed the pait, d that minimized
SO0 L(SOPE(SE -, d) — SERE(SE))2. The resulting values are = 0.304,

d=0.072

2.4. Optimization problem

Once we know how the model behaves, we would like to find a sttegigesults
in the most efficient bioreactor. This problem amounts toifigd

argmin, g J(s), (5)
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where® is the set of all admissible shapes, ahi$ our fithess function to be defined
in the next section. The set of admissible shapes is chaizedeby the tanks that
can be obtained by varying the degrees of freedom labeldd awyit;, b2, and ¢ in
Figure 1. The contour of ,; results from interpolation using a shape-preserving
piecewise cubic hermite polynomial.

1—‘in
E
DR
\
\
() \
] \ g
L."’ \\ =
9 (b, ,b,)
/
/
/
//
| a
r

out

Figure 1. Shape parameterization.

Each tank is simulated for approximately half an hayp.( = 2000s.) and at the
end of this period, we compute the flux of the substrate tHidhg outlet using the

formula
7 = —/ svdl.
Cout

We denote byZ"! the result of evaluatingZ for the cylindrical bioreactor whose
shape is characterized by the parametetsc = 1.5, by = 2.5, bo = 2 (its volume is
approximately 66 r#).

The fitness of a given shape is determined according to thessipn
J = Pmax {0,Z — chl} + Volume, (6)

whereP is a penalty taken af)® andZ is the result of evaluating (2) for the current
shape. With this choice of fitness function, the optimizapoocess favors shapes that
yield a value ofZ smaller than that of the purely cylindrical bioreactor aachong
those, it chooses the ones that minimize the tank’s volume.

The optimization problems presented in Section 2.4 have Beé/ed using an
hybrid genetic algorithm described in the next section.
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2.5. Optimization algorithm

From a general point of view, the formulation of a global opgation problem, in
its minimization form, is given by :

min h(x) )]
whereh : © — IR is the cost function and is the optimization parameter belonging
to an admissible spa¢e ¢ IR", with N € IN.

In next sub-sections, we describe in detail the optimizatiethod. First, in Sec-
tion 2.5.1, we briefly introduce the considered genetic i@tlgm (GA). Then, we in-
troduce in Section 2.5.2 a method based in the optimizatidheoinitial population
of the GA to improve its performances.

2.5.1. Genetic algorithm

Genectic Algorithms (GAs) approximate the solution of thaimization problem
(7). They are based on principles related to Darwinian g¢iaifGOL 89]. GAs are
applied in biogenetics, computer science, engineeringa@uics, chemistry, manu-
facturing, mathematics, physics and other fields. A geraégiorithm works by repea-
tedly modifying a population of artificial structures thghuthe application of genetic
operators. They use techniques such as inheritance, onytagélection, and crossover.
GAs are typically black-box methods that use fitness infdiongexclusively ; they do
not require gradient information or other internal knovgeaf the problem.

A first family, calledpopulation X° = {z? € ©,j =1, ..., N, } of N, € IN pos-
sible solutions of the optimization problem, caliedividuals is randomly generated
in the search spad®. Starting from this population, we build recursively, € IN
new populations, callegenerationsX’ = {z} € ©,j =1,..., N, } withi = 1,.., N,
through three stochastic operators, called selectiossor@r and mutation. More pre-
cisely we present here a matrix-form approach for GAs :

Initially, a new population X° = {29 € ©,j = 1,..,N,} of N, € IN can-
didate solutions is created. Each candidate solution, @ddled individual, is ran-
domly generated in the search spa&teFrom the initial population, a new offspring
X'={2;€0,j=1,..,N}withi=1,.., N, andN, € IN is obtained by recursi-
vely applying three stochastic steps,, selection, crossover and mutation. Note that
X' can be rewritten using the followiny, x N-real valued matrix form :

S (®)
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In the following, the components of the GA generation (orat®n) are briefly
described.

Selection :Individuals are selected through a fithess-based procdsevitter
solutions (as measured by a fitness function) are typicatiyerfikely to be selected.
To this aim, each individual;’ is ranked with respect to its cost function vahue:}),

i.e. the lower itsh(a;§) value, the higher is the ranking and therefore, the higher is
its chances to be selected. Thévi, individuals are randomly selected froM’ to
becomeparents

Introducing a binaryV,, x N,, matrixS*, generated according to previous ranking
and selection processes, wif),, = 1 if the k-th individual of X" is the selected

parentnumber; andSJﬂk = 0 otherwise, we define :
Xi+171 _ SzXl (9)

Crossover : Crossover is a genetic operator that combines (mates) trem{zto
produce two new individuals callaghildren The idea behind crossover is that the new
individuals may be better than both parents if they take #w bharacteristics from
each of the parents. Crossover occurs during evolutionrdicgpto a user-definable
crossover probabilityMore precisely, we determine, with a probability € [0, 1], if
two consecutive parents K‘t!! exchange data or if they are directly copied into the
intermediate populatiof * 12,

Let us introduce a real-valued, x N, matrixC*, where for each couple of conse-
cutive lines(2j — 1,2j) with1 < j < L%J. The coefficients of thé2j — 1)-th and
2j-th rows are given by :

Coj12j-1 = A Cojn95 =1 = A1, Coja5 1= A2, Coj05 =1 X2

In this expression :

— A1 = Ay = 1if parents are directly copied (with a probability- p..).

— A1 and )\, are randomly chosen ilo, 1] if a data exchange occurs between the
two parents (with probability..).
Other coefficients of’ are set to 0. IfN,, is odd, theN,th parent is directly copied,
ieCy n, = 1.

This step can be summarized as :

Xi+1,2 — CiXi+171. (10)

Mutation : Mutation is a genetic operator that alters one or more nearpeter
values for some individuals of the population. With these parameter values, the
genetic algorithm may be able to increase the populatioersity and then the pro-
bability to escape from local minima. Mutation occurs dgravolution according to
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a user-definable mutation probability, i.e. each child igified (or mutated) with a
fixed probabilityp,,, € [0, 1].

Let us consider, for instance, a random perturbation matriwith an j-th line
equal to:

—arandom vector; € IRY, according to the admissible spa®eif a mutation is
applied to thath child (with probabilityp,,).

— 0 if no mutation is applied to thg-th child (with probability 1p,,).
Therefore, the new population can be written as :
Xi+1 — Xi+1,2 +5’L (11)

which can be rewritten as :
XH=Cs'xt £ (12)

The algorithm stops when a maximum number of iteratidfjsis reached, al-
though other termination criteria could be defined based.ekample, on a tole-
rancee. When the termination criterion is satisfied, the GA returnsoatput de-
noted byGAO(X%; N,, Ny, D, Des €) = argmin{h(wé)/xé € X'i=1,..,Np,
j=1,..,N,).

As Goldberg stated in [GOL 89], with these three basic ewmtuprocesses, it is
generally observed that the best obtained individual isrgetloser after each gene-
ration to the optimal solution of the problem.

Genetic algorithms do not require sensitivity computatiparform global and
multi-objective optimization and are easy to parallelidewever, their drawbacks re-
main their weak mathematical background, their computatioomplexity, their slow
convergence and their lack of accuracy. So, it is recomntwnelleen it is possible, to
complete the GA iterations by a descent method. This is épeaseful when the
functional is flat around the minimum [DUM 89].

2.5.2. Hybrid genetic algorithm

In this subsection, we describe a method to improve the paeince of the genetic
algorithm based on the optimization of the GA initial popida.

From a general point of view, we consider an optimizatioroatgm CA : V' —
0, calledcore optimization algorithmto solve (7). Herd/ is the search space where
we can choose the initial condition fofA. The other optimization parameters@©A
(such as the stopping criterion, number of iteration, ete)fixed by the user.

We assume the existence of a suitable initial conditienV" such that, for a given
precisione > 0, | CA(v) — mingce h(x)| < e. Thus, solving numerically (7) with the
considered core optimization algorithm means to solve

{ Findv € V such that

CA(v) € argmin g h(z). (13)
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In the case where the core optimization algorithm is the G&sented in Section
2.5.1, problem (13) can be rewritten as :

Find X° € V = ©"» such that (14)

GAO(XY Ny, Ny, P, P, €) € argmin,,co h(w)

whereN,,, Ny, pm, p. ande are the parameters considered to be fixed.

The solution of (14) may be determined, for instance, byaiire following hy-
brid algorithm based on the secant method and denoted(®y (Hybrid Genetic
Algorithm) :

Algorithm 1 HGA(t¢, Ny, Ny, P, Pe, €)
Input: ¢, € IN, Ny, Ny, P, Pe, @ande.
Randomly generat&{ = {s9 ; € ©,j = 1,..., N, }
for ¢ from 1 tot, do
Seto;, € argmin{h(z) : © € GAO(X); Ny, Ny, P, De, €) }
for j from 1toN, do

o :L'?J» . if h(o) = h(xaj),
1+1,j proje(x?ﬂ. — h(ol)#ﬁ;?])) otherwise,
whereprojg : IR — © is a projection algorithm ove® defined by the user.
end for
ConstructX?, , = {a7,, ;€ 0,5 =1,.., N, }.
end for

Output: argmin{GAO(X2; Ny, Ny , P, Des€), m =1,..., ¢}

HGA intends to optimize, individual by individual, the initipbpulation ofGAO.
For each individual in the initial populatioi?, with [ = 1,2, ..., t_1 :

— If there is a significant evolution of the cost function \@hetween this indivi-
dual and the best element found GAO(X?; N,, Ny , pm, pe, €), the secant method
used in Step 1.2 generates, in the optimized initial poinnaXlOH, a new individual
close to this best element.

— Otherwise, the secant method allows to create a new ingivid X}, far from
the current solution given b§AO(X?; Ny, Ny , P, Des €)-

The numerical experiments in [IVO 06-a] seem to indicatd ttamsidering al-
gorithm GAO reduces the computational complexity of GAs. In particuthis al-
lows to consider smaller values fof, and.V, than those required fa&AO alone. A
complete validation of this algorithm on various indudtgeoblems can be found in
[IVO 06-c, IVO 09, IVO 06-b, IVO 07, DEB 06].
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3. Results
3.1. Optimal shape

In order to solve the optimization problem 5, we have use tleti-p
cular MATLAB implementation of the algorithmHGA, described in Section
2.5, included in theGlobal Optimization Platformsoftware (freely available at
http ://www.mat.ucm.es/momat/software.html ). The algorithm parameters
are setto:

—ty, = 20, Ny = 20, N, = 20 ande = 0 (i.e., HGA runs until the given
computational complexity).

— The selection is a roulette wheel type [GOL 89] proportidnghe rank of the
individuals in the population.

— The crossover is barycentric in each coordinate with agiviiby of p. = 0.55.
— The mutation process is hon-uniform with a probabilitygf = 0.5.

— A one-elitism principle, that consists in keeping the eatibest individual in the
next generation, has also been imposed.

— 10 iterations of the steepest descent method are perfahtieel end of thélGA
starting from the obtained solution.

The number of cost function evaluation is about 6000. Eaeluation of the cost
function (6) (implemented using Matlab and COMSOL Multiglgs 3.5a toolboxes
[INF 09]), in both 2D and 3D cases, requires about 40s on & Qued-core 2.8Ghz
64bits computer with 12GB of RAM. Thus, the optimization gees takes approxi-
matively 67 hours.

After running the optimization procedure described in thecpding section, we
obtain the optimal shape displayed in Figure 2. The totalwa has been reduced by
20% which is a significative improvement of the bioreactotisracteristics.

3.2. Comparison between different models

Results are presented in Figure 4. As we can observe on thiserifor each §
there exists a paik(, d) which fits the PDE and ODE1 models, whose values increase
as S, increases. However, the valuesdpresent important oscillations whenp,Ss
high. Those oscillations are due to numerical instabditiich can be mitigated by
decreasing the time steps used in the ODE model. When soléqlti-objective
problem ODE2, we have found values af, () which produce substrate concentra-
tions with tendencies similar to the PDE model (increashmentconstant). A more
in-depth analysis should be conducted in order to bettechmifite ODE2 and PDE
models. For instance, this could be achieved by increasi@agnttmber of ODEs and
variables considered.
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Figure 2. Bioreactor shape obtained after the optimization proc@$se normalized
substrate concentration distribution and old shape ar® gigesented.

1

4. Conclusions

In this work, we have presented two models, based respbctive PDEs and
ODEs, for describing the behavior of a particular bio-reactThe PDE model has
been used to reduce the bio-reactor volume keeping itsiolgeifficiency. The second
model, based on ODE, is computationally low and has beehresdid to reproduce
similar results to the PDE one. Those first results are eagiog and further studies
should contemplate a more complex shape optimizationif&iance, considering the
bio-reactor height) and a more comple ODE model (involviragerODEs and coeffi-
cients). Among possible extensions, we should considexsoakere the bioreactor is
equipped with a system of retention of biomass (either ngwinfixed bed bioreac-
tor).
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