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RÉSUMÉ.Dans cet article, nous étudions la conception optimale d’un réacteur biologique dans
lequel un substrat est dégradé par un écosystème microbien dans unenvironnement non homo-
gène. Dans le but d’obtenir un modèle entrée-sortie simple sous la forme d’un système d’EDOs
mais prenant en compte le caractère non homogène du réacteur, un premier modèle de dimen-
sion infini est approximé par une interconnection de chemostats. Les résultats préliminaires en
considérant une cinétique de Monod sont présentés.

ABSTRACT.In this paper, we focus on the modeling, simulation and shape optimization of a
dispersive bio-reactor in which a substrate is degraded by a microbial ecosystem in an non
homogeneous environment. Two different modeling approaches are used in order to obtain a
low computational model to quickly evaluate the behavior of our bio-reactor. The first one is
based on coupled spatial and time dependent EDPs. The second one, obtained by optimization,
is based on two interconnected systems of ODEs with coefficient calibratedusing the first PDE
model. Preliminary results assuming a Monod kinetics are presented.

MOTS-CLÉS :Bioreacteur dispersif, Optimisation de forme, Conception optimale, Optimisaton
globale, Algorithms génétiques.

KEYWORDS:Dispersive bioreactors, Shape optimization, Optimal design, Global optimization,
Genetic algorithms.
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1. Introduction

The optimal design —the characterization of the main design parameters of a sys-
tem under performance/economical/footprint constraints— of biosystems has attrac-
ted a lot of attention these last years. Indeed, the diversity of unitary systems and the
large spectrum of optimization criteria has led to the search for the “best solution” with
respect to a given optimization problem, in particular in the field of catalytic chemical
reactions. The problem under consideration in most studiescan be stated as follows :
given

1) the model of the process,

2) the input and required output reactant concentrations (that is to say, the conver-
sion rate is specified), and

3) the flow rate to be processed, what are the volumes ofN tanks in series such
that the total volume of the whole process be minimal ?

A rigorous solution to this problem for catalytic biosystems (i.e., a biological reaction
in which the activity of the biocatalyst is assumed to be constant) exhibiting Michaelis-
Menten kinetics was proposed by [LUY 82], while the solutionfor a fairly large class
of autocatalytic systems (including, in particular, the well-known Monod and Hal-
dane kinetics) was proposed by [HIL 89]. Recently, these results were revisited and
extended by [HAR 03], [HAR 05] and [NEL 06].

However, these studies suffer of two important drawbacks :

– While the proposed results are valid for small and medium sized systems, the
diffusion phenomena that occur in larger tanks were not studied ;

– The dimensioning parameters were not considered —only the total volume of
the systems were optimized. However, with respect to a real case, design parameters
such as the diameter or the height of any biological or chemical system will influence
its performance.

In the present paper we propose to couple hydrodynamics withbiological phenomena
occurring in a diffusive bio-reactor which the main design parameters (reactor shape
and total volume) are optimized with respect to the output concentration. To do so, we
present a particular spatial modeling based on coupled PDEs. We also define a second
model, computationally cheaper, based on two systems of ODEs with coefficient cali-
brated using the outputs given by the PDE model. The objective of this second model
is to quickly provide the behavior of the considered bioreactor.

The paper is organized as follows. First, the PDE and ODE models of the system
and the way they are compared are presented. Then, the optimization problem and
the optimization method used to sole it are give. Finally, some preliminary results are
given.
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2. Mathematical model

In this Section we present the two models used to describe thebehavior of the
considered bio-reactors.

2.1. Device description

The bioreactor under consideration is depicted in Figure 1(a). It contains a certain
amount of biomass that resides inΩ∗ and reacts with a diluted substrate entering
through an inletΓ∗

in that is located at the top. At the bottom there is an outletΓ∗
out

allowing the uncontaminated liquid to leave the container.

The device’s geometry is that of a solid of revolution and, consequently, it can be
characterized by a 2D model. The symmetry axisΓsym is shown as a dotted line in
Figure 1(b), the container region is denoted byΩ, the wall isΓwall, and the inlet and
outlet are (respectively)Γin andΓout. Note that∂Ω = Γin ∪ Γwall ∪ Γout ∪ Γsym.

(a) 3D representation of the bio-
reactor

(b) 2D symmetric repre-
sentation of the bioreac-
tor

In the numerical experiments that we performed the length ofΓwall was set to 5 m.
and the radius of the inlet and outlet were fixed atΓin = Γout = 0.5m.

2.2. PDEs based modeling

Background material on a similar device can be found in [GRI 01].
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The fluid is modelled using the Incompressible Navier-Stokes equations

{

ρ∂u

∂t
+ ρ(u · ∇)u = ∇ ·

[

−pI + η
(

∇u + (∇u)
T

)]

+ F, in Ω

∇ · u = 0 in Ω
, (1)

whereu = (u, v) is the velocity field [m/s],p is the pressure [Pa],ρ is the density
[kg/m3], η is the dynamic viscosity [Pa· s], andF = (0,−g0 · η) is the volume force
[N/m3], with g0 ≃ 9.8 [m/s2] being the standard gravity constant.

The boundary conditions are :u·n = 0, in Γsym, t·
[

−pI + η
(

∇u + (∇u)
T

)]

n =

0, in Γsym, u = u0, in Γin, η
(

∇u + (∇u)
T

)

n = 0, in Γout, p = 0, in Γout,u = 0, in

Γwall, whereu0 = (0, v0) gives a parabolic velocity conditionv0 = Q(x− 1
2
)(x+ 1

2
)

at the inlet withQ = 0.2 m/s.

The process of convection and diffusion of the substrate insideΩ is modelled by :

∂s

∂t
+ ∇ · (−D1∇s) = −µ(s)x − u · ∇s, in Ω, (2)

wheres stands for the concentration of the substrate [mol/m3], andD1 = 2 · 10−8

[m2/s] is the diffusion coefficient. The reaction rateµ is a Monod (Michaelis-Menten)
kinetic function of the formµ(c) = µmax

c

1+c
, with µmax = 0.05 [s−1].

The boundary conditions are given by−n · N = N0, in Γin n · N = 0, in Γsym ∪
Γwall, n · (−D1∇s) = 0, in Γout, whereN = −D1∇s + su, and the inward flux is
given byN0 = Sin v [mol/(m2 · s)] takingSin = 1 in this case. The tank starts with a
homogeneous value ofx set to 0.5 [mol/m3].

For the biomass, the convection and diffusion are governed by equations similar
to (2) (changing the sign ofµ(s)x) with a diffusion coefficientD2 = 3 · 10−8 [m2/s],
N0 = 0 [mol/(m2 · s)] and an uniform initial bio-reactor concentration of 0.5[mol/(m2

s)].

This system of PDEs is solved by using a Finite Element Methodapproach descri-
bed in [IVO 06-b].

2.3. ODE based modeling and comparison with PDE based model

We have performed a comparison between the PDE model and other model based
on ODEs systems which model two bio-reactors, obtained by dividing the main bio-
reactor in two interconnected sub-volumes : one volume isα · V , which receive and
reject the contaminated flow, and the other one(1 − α) · V , which is connected with
the previous tank.
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This model is defined by the following dynamical system
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













ẋ1 = µ(s1)x1 −
Q̄

αV
x1 +

d

αV
(x2 − x1),

ṡ1 = −µ(s1)x1 +
Q̄

αV
(Sin − s1) +

d

αV
(s2 − s1),

ẋ2 = µ(s2)x2 +
d

(1 − α)V
(x1 − x2),

ṡ2 = −µ(s2)x2 +
d

(1 − α)V
(s1 − s2),

x1(0) = x2(0) = Sin,

s1(0) = s2(0) = 0,

(3)

wherex1 andx2 correspond to the evolution of the biomass ands1 ands2 correspond
to the evolution of the substrate in the two sub-volumes,α ∈ (0, 1), d > 0, and
Q̄ = 4/3πr3Q with r = 0.5 being the radius of the inlet andQ having the same value
as in Section 2.2.

If we denote bySODE
out the value ofs1 when [3] reaches its steady state then we

can construct a mapping
Sin 7→ SODE

out (Sin;α, d).

The equivalent of the previous mapping forPDE can be defined as a correspondence
betweenSin and the concentration of substrate at the outlet after enough time has
passed :

Sin 7→ SPDE
out (Sin) =

∫

Γout

cdΓ
∫

Γout

dΓ
(4)

These two functionsSODE
out andSPDE

out provide us with the basis for comparison of the
two models. We performed the following two numerical experiments for the cylindri-
cal shape described in Section 2.4 forSin ranging from 0.25 to 10 mol/m3 :

ODE1 For each value ofSin we computed the values ofα and d that minimized
(SODE

out (Sin;α, d)−SPDE
out (Sin))2. The resulting values are shown in Figure 3.2.

ODE2 For the set{Si
in | i = 1, . . . , 5}, we computed the pairα, d that minimized

∑5

i=1(S
ODE
out (Si

in;α, d) − SPDE
out (Si

in))2. The resulting values areα = 0.304,
d = 0.072

2.4. Optimization problem

Once we know how the model behaves, we would like to find a shapethat results
in the most efficient bioreactor. This problem amounts to finding

arg mins∈Θ J(s), (5)
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whereΘ is the set of all admissible shapes, andJ is our fitness function to be defined
in the next section. The set of admissible shapes is characterized by the tanks that
can be obtained by varying the degrees of freedom labeled with a, b1, b2, and c in
Figure 1. The contour ofΓwall results from interpolation using a shape-preserving
piecewise cubic hermite polynomial.

� � � � � � � �

�

�

� � 	 �
�� �� � � �� �	

Figure 1. Shape parameterization.

Each tank is simulated for approximately half an hour (tmax = 2000s.) and at the
end of this period, we compute the flux of the substrate through the outlet using the
formula

Z = −

∫

Γout

s v dΓ.

We denote byZcyl the result of evaluatingZ for the cylindrical bioreactor whose
shape is characterized by the parametersa = c = 1.5, b1 = 2.5, b2 = 2 (its volume is
approximately 66 m3).

The fitness of a given shape is determined according to the expression

J = P max
{

0, Z − Zcyl
}

+ Volume, (6)

whereP is a penalty taken as109 andZ is the result of evaluating (2) for the current
shape. With this choice of fitness function, the optimization process favors shapes that
yield a value ofZ smaller than that of the purely cylindrical bioreactor and,among
those, it chooses the ones that minimize the tank’s volume.

The optimization problems presented in Section 2.4 have been solved using an
hybrid genetic algorithm described in the next section.
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2.5. Optimization algorithm

From a general point of view, the formulation of a global optimization problem, in
its minimization form, is given by :

min
x∈Θ

h(x) (7)

whereh : Θ → IR is the cost function andx is the optimization parameter belonging
to an admissible spaceΘ ⊂ IRN , with N ∈ IN.

In next sub-sections, we describe in detail the optimization method. First, in Sec-
tion 2.5.1, we briefly introduce the considered genetic algorithm (GA). Then, we in-
troduce in Section 2.5.2 a method based in the optimization of the initial population
of the GA to improve its performances.

2.5.1. Genetic algorithm

Genectic Algorithms (GAs) approximate the solution of the minimization problem
(7). They are based on principles related to Darwinian evolution [GOL 89]. GAs are
applied in biogenetics, computer science, engineering, economics, chemistry, manu-
facturing, mathematics, physics and other fields. A geneticalgorithm works by repea-
tedly modifying a population of artificial structures through the application of genetic
operators. They use techniques such as inheritance, mutation, selection, and crossover.
GAs are typically black-box methods that use fitness information exclusively ; they do
not require gradient information or other internal knowledge of the problem.

A first family, calledpopulation, X0 = {x0
l
∈ Θ, j = 1, ..., Np} of Np ∈ IN pos-

sible solutions of the optimization problem, calledindividuals, is randomly generated
in the search spaceΘ. Starting from this population, we build recursivelyNg ∈ IN
new populations, calledgenerations, Xi = {xi

l
∈ Θ, j = 1, ..., Np} with i = 1, .., Ng

through three stochastic operators, called selection, crossover and mutation. More pre-
cisely we present here a matrix-form approach for GAs :

Initially, a new population, X0 = {x0
j
∈ Θ, j = 1, ..., Np} of Np ∈ IN can-

didate solutions is created. Each candidate solution, alsocalled individual, is ran-
domly generated in the search spaceΘ. From the initial population, a new offspring
Xi = {xi

j
∈ Θ, j = 1, ..., Np} with i = 1, .., Ng andNg ∈ IN is obtained by recursi-

vely applying three stochastic steps,i.e.,selection, crossover and mutation. Note that
Xi can be rewritten using the followingNp × N -real valued matrix form :

Xi =







xi
1(1) . . . xi

1(N)
...

.. .
...

xi
Np

(1) . . . xi
Np

(N)






(8)
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In the following, the components of the GA generation (or iteration) are briefly
described.

Selection : Individuals are selected through a fitness-based process, where fitter
solutions (as measured by a fitness function) are typically more likely to be selected.
To this aim, each individual,xi

j
is ranked with respect to its cost function valueh(xi

j
),

i.e. the lower itsh(xi
j
) value, the higher is the ranking and therefore, the higher is

its chances to be selected. Then,Np individuals are randomly selected fromXi to
becomeparents.

Introducing a binaryNp ×Np matrixSi, generated according to previous ranking
and selection processes, withSi

j,k
= 1 if the k-th individual of Xi is the selected

parentnumberj andSi

j,k
= 0 otherwise, we define :

Xi+1,1 = SiXi. (9)

Crossover :Crossover is a genetic operator that combines (mates) two parents to
produce two new individuals calledchildren. The idea behind crossover is that the new
individuals may be better than both parents if they take the best characteristics from
each of the parents. Crossover occurs during evolution according to a user-definable
crossover probability. More precisely, we determine, with a probabilitypc ∈ [0, 1], if
two consecutive parents inXi+1,1 exchange data or if they are directly copied into the
intermediate populationXi+1,2.

Let us introduce a real-valuedNp×Np matrixCi, where for each couple of conse-
cutive lines(2j − 1, 2j) with 1 ≤ j ≤ ⌊

Np

2
⌋. The coefficients of the(2j − 1)-th and

2j-th rows are given by :

Ci

2j−1,2j−1 = λ1, Ci

2j−1,2j = 1 − λ1, Ci

2j,2j−1 = λ2, Ci

2j,2j = 1 − λ2

In this expression :

– λ1 = λ2 = 1 if parents are directly copied (with a probability1 − pc).

– λ1 andλ2 are randomly chosen in]0, 1[ if a data exchange occurs between the
two parents (with probabilitypc).

Other coefficients ofCi are set to 0. IfNp is odd, theNpth parent is directly copied,
i.e Ci

Np,Np
= 1.

This step can be summarized as :

Xi+1,2 = CiXi+1,1. (10)

Mutation : Mutation is a genetic operator that alters one or more new parameter
values for some individuals of the population. With these new parameter values, the
genetic algorithm may be able to increase the population diversity and then the pro-
bability to escape from local minima. Mutation occurs during evolution according to
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a user-definable mutation probability, i.e. each child is modified (or mutated) with a
fixed probabilitypm ∈ [0, 1].

Let us consider, for instance, a random perturbation matrixE i with an j-th line
equal to :

– a random vectorǫj ∈ IRN , according to the admissible spaceΘ, if a mutation is
applied to theith child (with probabilitypm).

– 0 if no mutation is applied to thej-th child (with probability 1-pm).

Therefore, the new population can be written as :

Xi+1 = Xi+1,2 + E i. (11)

which can be rewritten as :

Xi+1 = CiSiXi + E i. (12)

The algorithm stops when a maximum number of iterationsNg is reached, al-
though other termination criteria could be defined based, for example, on a tole-
ranceǫ. When the termination criterion is satisfied, the GA returns an output de-
noted byGAO(X0;Np, Ng, pm, pc, ǫ) = argmin{h(xi

j
)/xi

j
∈ Xi, i = 1, ..., Np,

j = 1, ..., Ng).

As Goldberg stated in [GOL 89], with these three basic evolution processes, it is
generally observed that the best obtained individual is getting closer after each gene-
ration to the optimal solution of the problem.

Genetic algorithms do not require sensitivity computation, perform global and
multi-objective optimization and are easy to parallelize.However, their drawbacks re-
main their weak mathematical background, their computational complexity, their slow
convergence and their lack of accuracy. So, it is recommended, when it is possible, to
complete the GA iterations by a descent method. This is especially useful when the
functional is flat around the minimum [DUM 89].

2.5.2. Hybrid genetic algorithm

In this subsection, we describe a method to improve the performance of the genetic
algorithm based on the optimization of the GA initial population.

From a general point of view, we consider an optimization algorithm CA : V →
Θ, calledcore optimization algorithm, to solve (7). HereV is the search space where
we can choose the initial condition forCA. The other optimization parameters ofCA
(such as the stopping criterion, number of iteration, etc.)are fixed by the user.

We assume the existence of a suitable initial conditionv ∈ V such that, for a given
precisionǫ > 0, |CA(v)−minx∈Θ h(x)| < ǫ. Thus, solving numerically (7) with the
considered core optimization algorithm means to solve

{

Findv ∈ V such that
CA(v) ∈ argminx∈Θ h(x).

(13)
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In the case where the core optimization algorithm is the GA presented in Section
2.5.1, problem (13) can be rewritten as :

{

FindX0 ∈ V = ΘNp such that
GAO(X0;Np, Ng, pm, pc, ǫ) ∈ argminw∈Θ h(w)

(14)

whereNp, Ng, pm, pc andǫ are the parameters considered to be fixed.

The solution of (14) may be determined, for instance, by using the following hy-
brid algorithm based on the secant method and denoted byHGA (Hybrid Genetic
Algorithm) :

Algorithm 1 HGA(tℓ, Np, Ng, pm, pc, ǫ)

Input: tℓ ∈ IN, Np, Ng, pm, pc, andǫ.
Randomly generateX0

1 = {x0
1,j

∈ Θ, j = 1, ..., Np}
for ℓ from 1 totℓ do

Setol ∈ argmin{h(x) : x ∈ GAO(X0
l
;Np, Ng, pm, pc, ǫ)}.

for j from 1 toNp do

x0
l+1,j =







x0
l,j

if h(ol) = h(x0
l,j

),

projΘ(x0
l,j

− h(ol)
ol−x

0

l,j

h(ol)−h(x0

l,j
)
) otherwise,

whereprojΘ : IR → Θ is a projection algorithm overΘ defined by the user.
end for
ConstructX0

l+1 = {x0
l+1,j

∈ Θ, j = 1, ..., Np}.
end for

Output: argmin{GAO(X0
m;Np, Ng , pm, pc, ǫ), m = 1, ..., tℓ}.

HGA intends to optimize, individual by individual, the initialpopulation ofGAO.
For each individual in the initial populationX0

l
, with l = 1, 2, ..., tℓ−1 :

– If there is a significant evolution of the cost function value between this indivi-
dual and the best element found byGAO(X0

l
;Np, Ng , pm, pc, ǫ), the secant method

used in Step 1.2 generates, in the optimized initial population X0
l+1, a new individual

close to this best element.

– Otherwise, the secant method allows to create a new individual inX0
l+1 far from

the current solution given byGAO(X0
l
;Np, Ng , pm, pc, ǫ).

The numerical experiments in [IVO 06-a] seem to indicate that considering al-
gorithm GAO reduces the computational complexity of GAs. In particular, this al-
lows to consider smaller values forNp andNg than those required forGAO alone. A
complete validation of this algorithm on various industrial problems can be found in
[IVO 06-c, IVO 09, IVO 06-b, IVO 07, DEB 06].
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3. Results

3.1. Optimal shape

In order to solve the optimization problem 5, we have use the parti-
cular MATLAB implementation of the algorithmHGA, described in Section
2.5, included in theGlobal Optimization Platformsoftware (freely available at
http ://www.mat.ucm.es/momat/software.html ). The algorithm parameters
are set to :

– tℓ1 = 20, Ng = 20, Np = 20 and ǫ = 0 (i.e., HGA runs until the given
computational complexity).

– The selection is a roulette wheel type [GOL 89] proportional to the rank of the
individuals in the population.

– The crossover is barycentric in each coordinate with a probability of pc = 0.55.

– The mutation process is non-uniform with a probability ofpm = 0.5.

– A one-elitism principle, that consists in keeping the current best individual in the
next generation, has also been imposed.

– 10 iterations of the steepest descent method are performedat the end of theHGA
starting from the obtained solution.

The number of cost function evaluation is about 6000. Each evaluation of the cost
function (6) (implemented using Matlab and COMSOL Multiphysics 3.5a toolboxes
[INF 09]), in both 2D and 3D cases, requires about 40s on a Intel Quad-core 2.8Ghz
64bits computer with 12GB of RAM. Thus, the optimization process takes approxi-
matively 67 hours.

After running the optimization procedure described in the preceding section, we
obtain the optimal shape displayed in Figure 2. The total volume has been reduced by
20% which is a significative improvement of the bioreactor’scharacteristics.

3.2. Comparison between different models

Results are presented in Figure 4. As we can observe on this Figure, for each Sin
there exists a pair (α, d) which fits the PDE and ODE1 models, whose values increase
as Sin increases. However, the values ofd present important oscillations when Sin is
high. Those oscillations are due to numerical instabilities which can be mitigated by
decreasing the time steps used in the ODE model. When solving the multi-objective
problem ODE2, we have found values of (α, d) which produce substrate concentra-
tions with tendencies similar to the PDE model (increasing then constant). A more
in-depth analysis should be conducted in order to better match the ODE2 and PDE
models. For instance, this could be achieved by increasing the number of ODEs and
variables considered.
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Figure 2. Bioreactor shape obtained after the optimization process.The normalized
substrate concentration distribution and old shape are also presented.

4. Conclusions

In this work, we have presented two models, based respectively on PDEs and
ODEs, for describing the behavior of a particular bio-reactor. The PDE model has
been used to reduce the bio-reactor volume keeping its cleaning efficiency. The second
model, based on ODE, is computationally low and has been calibrated to reproduce
similar results to the PDE one. Those first results are encouraging and further studies
should contemplate a more complex shape optimization (for instance, considering the
bio-reactor height) and a more comple ODE model (involving more ODEs and coeffi-
cients). Among possible extensions, we should consider cases where the bioreactor is
equipped with a system of retention of biomass (either moving or fixed bed bioreac-
tor).
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